Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron resonance fission neutron analysis for nondestructive fissile material assay

Hironaka, Kota; Lee, J.; Koizumi, Mitsuo; Ito, Fumiaki*; Hori, Junichi*; Terada, Kazushi*; Sano, Tadafumi*

Nuclear Instruments and Methods in Physics Research A, 1054, p.168467_1 - 168467_5, 2023/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Neutron capture and total cross-section measurements and resonance parameter analysis of niobium-93 below 400 eV

Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Terada, Kazushi*; Meigo, Shinichiro; Toh, Yosuke; Segawa, Mariko; et al.

Journal of Nuclear Science and Technology, 59(3), p.318 - 333, 2022/03

 Times Cited Count:6 Percentile:64.12(Nuclear Science & Technology)

Journal Articles

Measurement of thick target neutron yield at 180$$^{circ}$$ for a mercury target induced by 3-GeV protons

Matsuda, Hiroki; Iwamoto, Hiroki; Meigo, Shinichiro; Takeshita, Hayato*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 483, p.33 - 40, 2020/11

 Times Cited Count:3 Percentile:35.72(Instruments & Instrumentation)

A thick target neutron yield for a mercury target at an angle of 180$$^{circ}$$ from the incident beam direction is measured with the time-of-flight method using a 3-GeV proton beam at the Japan Proton Accelerator Research Complex (J-PARC). Comparing the experimental result with a Monte Carlo particle transport simulation by the Particle and Heavy Ion Transport code System (PHITS) shows that there are apparent discrepancies. We find that this trend is consistent with an experimental result of neutron-induced re- action rates obtained using indium and niobium activation foils. Comparing proton-induced neutron-production double-differential cross-sections for a lead target at backward directions between the PHITS calculation and experimental data suggests that the dis- crepancies for our experiments would be linked to the neutron production calculation around 3 GeV by the PHITS spallation model and/or the calculation of nonelastic cross-sections around 3 GeV in the particle transport simulation.

Journal Articles

Neutronic design of neutron moderator on a reentrant-hole configuration for Kyoto University Accelerator-based Neutron Source (KUANS)

Okita, Shoichiro; Tasaki, Seiji*; Abe, Yutaka*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 19(3), p.178 - 184, 2020/09

The Kyoto University Accelerator-based Neutron Source (KUANS) is a compact neutron source that is mainly used for spectrometer and detector development. In addition, it is also suited for experiments to study the neutronic design of moderators owing to the relatively low neutron generation yield by $$^{9}$$Be(p,n). We present a neutronic design of the neutron moderator on a reentrant-hole configuration for KUANS to enhance the neutron emission, and some experiments are conducted at KUANS for verification. A polyethylene moderator on a reentrant-hole configuration is designed by PHITS calculation and is introduced to KUANS to obtain intense oblong neutron beams. The intensity of the pulsed neutron beam is experimentally measured. The results reveal that the intensity becomes approximately 1.9 times stronger than that of the conventional rectangular design. In addition, the ratio of its intensity to the conventional intensity increases to approximately threefold as the neutron wavelength increases. It is interesting to note that the longer the neutron wavelength, the more efficiently they are extracted from the inside of the moderator owing to the existence of the reentrant-hole configuration.

Journal Articles

Neutron resonance analysis for nuclear safeguards and security applications

Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi

EPJ Web of Conferences, 146, p.09002_1 - 09002_4, 2017/09

 Times Cited Count:10 Percentile:97.68(Nuclear Science & Technology)

Journal Articles

Experimental setup and procedure for the measurement of the $$^{7}$$Be(n, $$alpha$$)$$alpha$$ reaction at n_TOF

Cosentino, L.*; Musumarra, A.*; Barbagallo, M.*; Pappalardo, A.*; Harada, Hideo; Kimura, Atsushi; n_TOF Collaboration*; 126 of others*

Nuclear Instruments and Methods in Physics Research A, 830, p.197 - 205, 2016/09

 Times Cited Count:19 Percentile:86.61(Instruments & Instrumentation)

Journal Articles

The New vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance

Wei${ss}$, C.*; Chiaveri, E.*; Girod, S.*; Vlachoudis, V.*; Harada, Hideo; Kimura, Atsushi; n_TOF Collaboration*; 126 of others*

Nuclear Instruments and Methods in Physics Research A, 799, p.90 - 98, 2015/11

 Times Cited Count:78 Percentile:99.04(Instruments & Instrumentation)

Journal Articles

Technique of neutron resonance transmission analysis for active neutron NDA

Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Kureta, Masatoshi; Harada, Hideo; Seya, Michio; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.

Proceedings of 37th ESARDA Annual Meeting (Internet), p.846 - 851, 2015/08

One of non-destructive techniques using neutron resonance reaction is neutron resonance transmission analysis (NRTA). We are presently developing a new active neutron non-destructive method including NRTA in order to detect and quantify special nuclear materials (SNMs) in nuclear fuels containing MA. We aim at applying the technique to not only particle-like debris but also other materials in high radiation field. For this aim, we make use of fruitful knowledge of neutron resonance densitometry (NRD) that was developed for particle-like debris in melted fuel. NRTA detects and quantifies SNMs by means of analyzing a neutron transmission spectrum via a resonance shape analysis. In this presentation, we explain the basic of NRTA and its role in the active neutron technique. Then, with knowledge obtained in the development of NRD, we discuss items to be investigated for NRTA in our active neutron technique.

Journal Articles

Generalized analysis method for neutron resonance transmission analysis

Harada, Hideo; Kimura, Atsushi; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi; Becker, B.*; Kopecky, S.*; Schillebeeckx, P.*

Journal of Nuclear Science and Technology, 52(6), p.837 - 843, 2015/06

 Times Cited Count:3 Percentile:25.64(Nuclear Science & Technology)

Journal Articles

Measurements and analyses of angular neutron flux spectra on liquid nitrogen,liquid oxygen and iron slabs

Oyama, Yukio; Maekawa, Hiroshi; Kosako, Kazuaki*

Proc. of the Nuclear Data for Science and Technology, p.337 - 340, 1992/00

no abstracts in English

Journal Articles

Experiment on angular neutron flux spectra from lead slabs bombarded by D-T neutrons

Maekawa, Hiroshi; Oyama, Yukio

Fusion Engineering and Design, 18, p.287 - 291, 1991/00

 Times Cited Count:9 Percentile:69.44(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Study on Thermal Neutron Spectra in Reactor Moderators by Time-of-Flight Method

Akino, Fujiyoshi

JAERI-M 82-207, 180 Pages, 1982/12

JAERI-M-82-207.pdf:5.16MB

no abstracts in English

JAEA Reports

Measurements of Angular Dependent Thermal Neutron Spectra in Natural Uranium-Light Water Slab Lattice

Akino, Fujiyoshi; ; ;

JAERI-M 5173, 40 Pages, 1973/02

JAERI-M-5173.pdf:1.18MB

no abstracts in English

14 (Records 1-14 displayed on this page)
  • 1